
Learning and Practicing Interactive Data
Language (IDL) to Manipulate Scientific Data

Jamika Baltrop, Wanda-Marie Carey, Brittnei Teasley, Chelsea Vick

CERSER
1704 Weeksville Road, Box #672

Elizabeth City, North Carolina 27909

Abstract-The Center for Remote Sensing of Ice Sheets
(CRESIS) headed at the University of Kansas (KU) was
funded by the National Science Foundation (NSF) to
explore the Polar Regions (Greenland and Antarctica),
and research the various changes occurring with ice
sheets. CReSIS uses various types of radar to analyze
ice sheet data. Researchers use radar to probe the ice
sheets to get huge amounts of data- Synthetic Aperture
Radar (SAR) data. SAR data contains more
information on the ice sheets for discovery. During the
International Polar Year (IPY 2007-2009), luminous
data sets will be obtained- Terabytes of data will be in
just one field campaign. This means large storage
devices and fast computers (multi-core) will be needed
to process the data sets and retrieve results in a timely
manner, which will outstrip the current capacity of the
grids of storage and computers.
 In response, Indiana University (IU),
Elizabeth City State University (ECSU), and the
University of Kansas (KU) initiated a Polar Grid
project for the purpose to set up a Cyber –
Infrastructure for Remote Sensing of Ice Sheets. This
Grid will consist of the state-of-the-art computers and
storage hardware, and also application/processing tools,
and scientific gateways for the Polar Science
Community to conveniently access the resources. It is
important, too, to educate and train the researches,
educators, and students for polar science. The Center of
Excellence in Remote Sensing Education and Research
(CERSER) of ECSU has committed to engage the
students and train them for polar science with hand-on
practices and skills for future study, research and
career dedications to the polar science field.
 To provide support for Polar data collection,
an advanced scientific programming and visualization
environment will be used to develop interfaces for
computation and visualization- computer-intensive
tasks such as in big array operations. In this project,
Interactive Data Language (IDL) was investigated as
the package for efficient and convenient data
visualization capacities in the forms of graphics, images
and photographs. 2D and 3D images require intensive
computation and efficient visualization, which are
crucial for the Polar Grid project.

Figure 1. The Screen shot of an IDL program.

 The project involved learning the IDL
language and environment. IDL is an array-oriented
data analysis and visualization application, which is
widely used in research, commerce, and education. Its
application areas include engineering, medical physics,
astronomical, space, and earth science. It offers rapid
interactive data analysis and visualization, a
programming environment, and end user applications.
IDL is available for Windows, UNIX, Linux, Macintosh
and VMS platforms and Operating Systems. The high
availability facilitates data analysis and visualization in
multi-platform environment, and ensures high code
portability among platforms and systems.

I. INTRODUCTION

Interactive Data Language provides a host of tools
which aid in scientific calculations and analysis. The
general purpose of IDL is it is a scientific computing
package that provides mathematical functions,
animation and scientific visualization tools. Once
being introduced to the basics of IDL, it will be maps
and charts that can assists in classrooms as well as
outside of the classroom

II. IDL MODES

There are two modes that we used and focused in on
in our research: interactive mode and compiled mode.
Together these two modes allowed for quick and
efficient results when writing and executing
programs and various other mathematical functions.

A.Interactive Mode
 Interactive mode allowed us to rapidly visualize
and analyze data concisely using single-line
commands. Commands typed in the command input
window were immediately executed by the press of
the ‘Enter Key’. This mode also allowed for us to
see quick results of our work in the form of an image,
plot, or other graphical representation without the
usual edit/compile/execute model used by languages,
such as C++ or FORTRAN.

B.Compiled Mode
 Compiled mode is the where sequences of IDL
commands are compiled, edited, and executed. We
used the compiled mode to create programs, where
the input commands that are larger than ten lines that
could not be created using interactive mode.

III. ARITHIMETIC FUNCTIONS

Mathematically, IDL assists in a number of ways
including the simplest forms of math and arithmetic
functions. Assigning a variable to a desired number
or mathematic function was only the beginning.
These variables will later be used to perform
operations that present answers to an equation. The
matrix was introduced as a format in which equations
are calculated. Braces will be used to define vectors,
or 1-dimensional arrays, which we then used within a
matrix. The matrix can assist in multiplying a large
array of numbers. When the output is printed, the
first index corresponds to the column, and the second
index to the row. Furthermore, vectors can be
multiplied together or by a matrix.

A.Creating a Matrix
 Matrices can be explicitly constructed from
vectors. The vectors are first defined using numbers
enclosed in square braces. For example, we assigned
vectors v1, v2, and v3 to be

v1 = [1, 2, 0]
v2 = [1, 0, 0]
v3 = [4, 5, 6].

The three vectors are each inputted as single-line
commands in the Command Input Window and
displayed in the Output Log Window. We then
assigned the three vectors to any variable (letter) such
that

A = [[v1], [v2], [v3]]

is also display in the output log window. The entire
matrix can now be viewed using the command:
‘print, A’ which yields the result

1 2 0
1 0 0
4 5 6.

B. Multiplying a Vector by a Matrix
 Perhaps the simplest task of computing arithmetic
functions in IDL is multiplying a vector by a matrix.
As in the previous section we defined a matrix A to
be [[1, 2, 0], [1, 0, 0], [4, 5, 6]]. The next step is
assigning a vector numbers for which the matrix was
multiplied by, whereas

v = [1, 2, 3].

Subsequently, matrix A is again displayed by use of
the command ‘print, A’, as well as the vector being
‘print, v’ outputting the result

1 2 3.

Multiplying the vector by the matrix, the command
‘print, v ## A’(the pound sign meaning
multiplication) now displays

15 17 18

as being the outcome of the problem.

C. Compiling IDL Commands into Programs
 The advantages of IDL programming is the
simplicity of compiling single-commands into a
program. We used the compiled mode to verify
correct results when inputting the IDL commands, or
for larger sets of commands. We began by retyping
the entire IDL commands in the Editor Window
using PRO (function) and the file name (MATRIX)
as the header and END (closing function), resulting

PRO MATRIX
v = [1, 2, 3]

print, A
print, v

print, v ## A

END.

The program was then saved on the local hard drive
of the computers we were using. To run and execute
the program we typed the path name

C:\RSI\IDL63\matrix.pro

usage of advanced computing,processing and storage.
The task ahead is to produce two interfaces:

 1) One interface will be used to demonstrate how to
perform computations using an array.

 2) The other interface will be used to visualize the
 data in the form of a graphic image or photograph.

in the command input line, followed by the command
‘.compile matrix.pro’ which again displayed the
output of the matrix?

IV. IMAGING

Possibly the most significant function of IDL is
imaging. This could be used within any mapping or
reconstruction of a certain area. In particular, the
team zoomed in on a section of New York and
improved the visual clarity, or resolution of the map.
We also made the pixels on the map of New York a
value of 140 into a full range of brightness. We made
the contrast of the enhancements on the picture as
well. We set the minimum brightness to 140, the
maximum brightness to a scale of 200 and the image
will display a brighter picture. Smoothing and
Sharpening the picture was also an area we touched.
Unsharp masking made the picture a bit blurry
because it contained low frequency to the original
image. Sharpening Images with differentiation
functions made a more sharpen image.

The interface will use the library of functions
Application Programming Interface (API) that will be
used in conjunction with computer programs such as
IDL to build applications. An example would be is
when you open your e-mail box instead of typing a
series of commands, you can simply use the menus
and icons to send and retrieve you mail.

REFERENCES

[1] University of Minnesota-Supercomputing
 Institute tutorial
 http://www.msi.umn.edu/software/idl/tutorial/idl-
 images.html

[2] Boston University-Scientific and Visualization
 (SCV) tutorial
 http://scv.bu.edu/documentation/tutorials/IDL/idl_
 webtut.html

Figure II. Image of Manhattan, New York imported into IDL in

TIFF format.

V. FUTURE WORK
Due to the limited time in researching and carrying
out our project, our goal is to continue to work on
creating a Cyber-Infrastructure for the Remote
Sensing of Ice Sheets and establishing a grid for the

	

